【资料图】
1、formulla:(n+1)^2-n^3=3n^2+3n+1.......(1) --->n^3-(n-1)^3=3(n-1)^2+3(n-1)+1......(2) --->(n-1)^3-(n-2)^3=3(n-2)^3+3(n-2)+1......(3) ............... 3^3-2^3=3*2^2+3*2+1......(n-1) 2^3-1^3=3*1^2+3*1+1......(n) (1)+(2)+(3)+......+(1): (n+1)^3-1^3=3(1^2+2^2+3^3+......+n^2)+3(1+2+3+......+1)+(1+1+......+1) --->n^3+3n^2+3n=3(1+2+3+......+n^2)+3*n(n+1)/2+n --->3(1^2+2^2+3^2+......+n^2)=n^3+3n^2+3n-3n(n+1)/2-n =n^3+3n^2/2+n/2 --->1^2+2^2+......+n^2=(2n^3+3n^2+n)/6 =n(2n^2+3n+1)/6 =n(n+1)(2n+1)/6.。
本文分享完毕,希望对大家有所帮助。